

Применение программного комплекса SCAD Office для расчета ферменной конструкции на различные виды нагрузок и их сочетания (Моделирование пространственной фермерной конструкции)

Москва 2023, Сизов Д.К.

Исходные данные

Рассмотрим ферменную конструкцию с треугольным в плане поперечным сечением

Варианты заданий									
№ вар	оианта	А	В	С	D	E			
1	11 4,100		2,500	Ι	7	IV			
2	12	3,600	1,900	II	8	V			
3	13	3,900	2,400	III	9	Ι			
4	14	4,200	2,300	IV	7	II			
5	15	4,000	2,400	V	8	III			
6	16	3,800	2,000	Ι	9	IV			
7	17	4,100	2,400	II	7	V			
8	18	3,600	2,300	III	8	Ι			
9	19	3,900	2,400	IV	9	II			
10	20	4,200	2,000	V	7	III			

А и В – геометрические размеры модели

С – ветровой район

D – сейсмическая балльность района Материал сталь C255

Построение конечно-элементной модели

Заметим, что до отметки +15,000 наше сечение равномерно сужается, а далее от +15,000 до отметки +28,625 представляет собой в плане равносторонний треугольник.

Построение модели возможно несколькими путями:

- с использованием последовательного ввода узлов модели и постепенного их соединения конечными элементами непосредственно в SCAD;
- 2. предварительное создание элементов модели в программе AutoCad с последующим импортом модели, либо ее фрагментов в программу SCAD в режиме сборки расчетной модели.

Следуя второму способу разобъем модель на две части

Создание схем в AutoCad

Изобразим в натуральную величину в (м) размеры поперечных сечений конструкции в автокаде в одном файле:

Нижняя часть

Для обеспечения плавного перехода нижней части в верхнюю скопируем верхнюю часть сечения в центр нижнего сечения, получим рисунок:

Создание верхней части в AutoCAD

Импорт верхней части расчетной схемы в SCAD

Далее, запустим SCAD, далее в меню выберем пункт: Импорт, выберем ранее сохраненный файл, обращая внимание на единицы импорта: выберем метры, если ферма нарисована 1:1 в метрах в автокаде.

; SCAD++ (64-6ит)	
Файл Настройки Вид Окно Сервис Справка	
 Новый Открыть Прочитать проект из текстового формата Прочитать проект из текстового формата 	Ctrl+0
Импорт	DXF, DWG
Открыть среду Сохранить среду Сохранить среду под другим именем Закрыть среду	Графические файлы
<u>1</u> C:\SDATA\one.SPR <u>2</u> C:\SDATA\verh.SPR <u>3</u> C:\SDATA\verh7.SPR	CIS/2
<u>4</u> C:\SDATA\verh1.SPR <u>5</u> C:\SDATA\Плита2.SPR	STAAD Commands File Abaqus Input File Gmsh
<u>6</u> C:\SDATA\Плита1.SPR	NG NETGEN Neutral Format

Результат импорта верхней части схемы

После импорта расчетной схемы, каждые отрисованные в отдельных слоях элементы будут находиться в отдельных группах, что позволяет назначить им сечения:

Элементы пояса, находятся в отдельной группе Элементы распорок, находятся в отдельной группе

Элементы раскосов, находятся в отдельной группе

Вид модели после назначения сечений

Назначены следующие сечения по ГОСТ Р 58064-2018:

Аналогично выполним создание модели нижней части В программе AutoCAD Запашном та

заданном расстоянии по высоте для плавного перехода сечения

Дополнение схемы раскосами и шпренгелями

Этап 1: Также в отдельном слое с уникальным именем создадим раскосы и шпренгели (отрисовка схемы производится также в автокаде, используется режим трехмерной привязки).

Этап 2: Разбиение элементов пояса на отдельные стержни в местах пересечения с распорками, для этого используем инструмент автокада:

Этап 3: Разбиение элементов распорок на отдельные стержни в местах пересечения с раскосами, а также в местах примыкания шпренгеля разбиению подвергается и элемент раскоса.

Правило такое: через каждый узел пересечения не может проходить нерасчлененный стержень.

Импорт нижней части в отдельный файл SCAD

Так же как и с верхней частью, произведем экспорт файла в dxf формат (2000), а затем его импорт в новый файл SCAD

Элементы пояса, находятся в отдельной группе

Элементы распорок, находятся в отдельной группе Элементы раскосов, находятся в отдельной группе

Элементы шпренгелей, находятся в отдельной группе **11**

Вид модели после назначения сечений

Назначены следующие сечения по ГОСТ Р 58064-2018:

Верхние стержни нижней части конструкции уже включены в верхнюю часть, созданную ранее

Создадим общую модель путем сборки нижней и верхней части

Для этого создадим новый проект, а в нем <u>**1 узел**</u>в точке с координатами 0,0,0. Далее используем команду «Режим сборки» из меню «Схема»

Далее активировать кнопку «Выбор способа сборки»

Vарара Выбор способа сборки

И выбрать

«Привязка к одному узлу»

Осуществить загрузку Подсхемы -выбрать низ мачты

Сборка модели из двух частей

правление Схема

Назначения

Yndaenenne Cxen

Далее вернемся в основную подсхему с узлом в точке 0,0,0, с помощью кнопки

«Активизировать основную подсхему» 🛛 📺 🛒

Выбрать левый нижний узел мачты, а далее кнопку произвести сборку. И далее подтвердить сборку.

Затем находясь в основной подсхеме вновь осуществить Загрузку присоединяемой подсхемы кнопкой На этот раз выбрать верхнюю часть мачты.

Далее опять возвращаемся в основную подсхему, в ней выбираем левый верхний узел схемы, затем возвращаемся в присоединяемую схему—то есть в верхнюю часть мачты, и там выбираем левый нижний узел, подтверждаем.

Variation Crosse Haster

₽⊞

Результат сборки верхней и нижней частей мачты

Узел для сборки

Так как при сборке жесткости стержней сохраняются, то для выполнения статического расчета на собственный вес достаточно закрепить конструкцию в уровне основания.

Не забыть выполнить «упаковку схемы» для уничтожения возможного мусора в расчетной схеме: свободных узлов, возможных сдвоенных элементов и.т.д.

Упаковка схемы осуществляется с использованием кнопки:

«Управление»→ «Упаковка данных»

В качестве закрепления выбираем закрепления препятствующие линейным перемещениям:

Расчет конструкции на собственный вес

Зададим нагрузку в виде собственного веса конструкции

Схема с заданной нагрузкой от собственного веса Перемещения в схеме от действия собственного веса, суммарные Вид на деформированную схему сверху, виден поворот мачты

Модальный анализ

Для выполнения модального анализа (определения собственных частот и форм колебаний конструкции) создадим динамическое загружение кнопкой:

На данном этапе рассматривается только нагрузка от собственного веса (принят коэффициент пересчета равным 1). Коэффициент пересчета принимается в зависимости от типа нагрузок:

Постоянные 1,0

Длительные 1,0

Снеговая 0,7

Кратковременные 0,35 (при этом кратковременные нагрузки, которые не имеют длительную часть не учитываются)

Иправление Схема	Назначения Узлы и Эл	тементы Загруже	ния
аметры динамических воздействий	and the second se	ntandii 🚥 🗙 🚥	
ощие данные Модальный анализ			
Вид воздействия	2 Собственные частоты без	льда	
🕐 Сейсмические воздействия	Имя		
💿 Ветровые воздействия	загружения Собственные частоты без л	Aa Amerika	
Прочие воздействия	👿 Преобразование статических нагрузок в ма	сы	
💿 Прямое интегрирование			
	Номер и имя присоединяемого Коэф. статического загружения пересчета		
Нормативная нагрузка	1 Собств_вес 🔹 0	+ Записать	
Преооразовывать массы из расчетных в нормативные			
	Загружение ициент		
	1 Собств_вес 1	🗙 Удалить	
	-		
	именование		
модальный анализ			
Импильс			
Импульс с отслеживанием истории			
Удар			
Удар с отслеживанием истории			
Удар с учетом влияния массы ударяю	готела		
Определение собственных форм и час	т 🗌 Анализ в заданном частотном диапазоне		
выполнить методом	οτ 👩 Γι дο 🚺 Γι	1.	
Итерации подпространств		To	
🗇 Ланцоша	Uграничение по максимальной частоте 0	14	
🔘 Наискорейшего спуска	Автоматическое определение количества ф	орм исходя из	
	 сооранных масс по паправлениям. 		
	V o v V o v -	7 0 9/	

Собственные частоты и формы колебаний мачты

Собственные частоты и формы колебаний мачты

Собственные частоты и формы колебаний мачты

В табличном виде результаты расчета могут быть сформированы кнопкой: 4

			Собственное значение	Частота		Период	Модальные массы (%)			
	Загружение	Номер формы		рад/сек	Гц	сек	x	Y	Z	График
2	Модальный	1	0.04	23.37	3.72	0.27	3,11	40.1	0	
		2	0.04	23.38	3.72	0.27	40.05	3.11	0	
		3	0.02	49.42	7.86	0.13	0	0	0.07	
		4	0.01	81.63	12.99	0.08	7.25	23.28	0	
		5	0.01	81.65	12.99	0.08	23.19	7.31	0	
		6	0.01	110.31	17.56	0.06	0	0	0.44	
		7	0.01	147.82	23.53	0.04	2.72	1.34	0	
		8	0.01	157.18	25.02	0.04	0.99	5.54	0	
		9	0.01	165.47	26.34	0.04	9.09	0.2	0	
		10	0.01	167.32	26.63	0.04	0.09	7.08	0	
					Сумма мо	дальных масс	86.49	87.96	0.5	Графи

Создание схемы только средствами SCAD

В том случае, если AutoCAD отсутствует на рабочем месте, то возможно построение расчетной схемы непосредственно в программном комплексе SCAD. В данном случае удобство создания схемы несколько уменьшается, так как в программном комплексе SCAD отсутствует возможность объектной привязке, например, к середине пролета (элемента). Также как и в первом случае будем создавать схему отдельно для верхней и нижней части. Начнем с наиболее простой **верхней части конструкции**.

В плоскости ХОУ

создадим: 1. узел с координатами 0,0,0 2. Узел с координатами 2.3, 0,0 3. Для ввода третьего узла зададим в окне ввода узлов следующую информацию:

Создание схемы только средствами SCAD (моделирование верхней части с постоянным сечением

Создание схемы только средствами SCAD

Продолжим создание верхней части конструкции в SCAD, перейдем в исходное отображение схемы, выберем созданный треугольник и откопируем его по высоте на требуемые величины, используя кнопку: «Копирование фрагмента схемы»

Создание схемы только средствами SCAD (пояса и раскосы)

Непосредственно в окне программы SCAD произведем соединение узлов распорок с использованием элементов поясов (поярусно) и раскосов. Каждый элемент пояса от узла одной распорки к узлу другой распорки:

Помещение элементов в соответствующие группы:

- 1. Пояса
- 2. Распорки
- 3. Раскосы производим путем активации соответсвующего выбора элементов:

- Только вертикальные Построение верхних фрагментов пояса
- только горизонтальные
- инверсия выбора

осуществим путем копирования узлов вверх на расстояние 0,63 м с использованим кнопки «Ввод узлов на заданном расстоянии от отмеченных)

Создание нижней части модели с использованием программы SCAD

Нижнее сечение рассматриваемой конструкции обладает переменным сечением по высоте, создадим узлы самого нижнего (на отм. 0,000) треугольника в плоскости ХОҮ. Узел 0,0,0 совместим с крайним левым узлом большего (нижнего треугольника) соелиним узпы

Создание нижнего фрагмента расчетной схемы

в SCAD

Далее соединим полученные узлы элементом с жесткостью распорок

Элемент основания мачты с промежуточными узлами по центру, Проведем две медианы и пересечем их в точке пересечения узлом с использованим кнопки

Общие данные	Профили металло	проката				
Способ задани Паранетри Профили м Численное Численное Произволы Переменны Сварные се Холодногну Физическа © Произв Сварные се Холодногну Физическа © Дроизвелы	я неские сечения эталлопроката описание араметрическое ные сечения е сечения е сечения е сечения тые профили а нелическость ольный обетон	Размеры сечений в мен	Y1 >	жестко. Сечени 0 76.0	аксание 45.0	Има

Скопируем узел-точку пересечения медиан в плоскости с отметками +1.500, +3.000, +6.000, +9.000, +12.000, +15.000 с помощью кнопки ввод узлов на заданном расстояни

Дробление стержней в точке пересечения

	ΔX	ΔΥ	ΔZ	Количество
	M	м	м	
1	0	0	1.5	2
2	0	0	3	4

Создание нижнего фрагмента расчетной схемы

В SCAD (формирование распорок) Далее соединим полученные узлы элементом с жесткостью распорок

Создание нижнего фрагмента расчетной схемы в SCAD (Формирование раскосов и поясов)

Далее соединим полученные узлы элементом с жесткостью поясов

Расчет мачты на ветровую нагрузку

Величина нормативного значения ветрового давления в зависимости от ветрового района можно принять по данным таблицы:

Ветровые районы России	Ia	Ι	II	Ш	IV	V	VI	VII
w₀, кПа (кгс/м²)	0,17	0,23	0,30	0,38	0,48	0,60	0,73	0,85
	(17)	(23)	(30)	(38)	(48)	(60)	(73)	(85)

Ветровая нагрузка относится к кратковременной нагрузке, коэффициент надежности по нагрузке **1,4**.

Ветровую нагрузку следует определять как сумму средней и пульсационной составляющих.

Нормативное значение средней составляющей ветровой нагрузки, действующей на высоте Z, над поверхностью земли следует определять по формуле:

 $W_m = W_0 kc$

где W_0 – нормативное значение ветрового давления в зависимости от ветрового района.

k – коэффициент, учитывающий изменение ветрового давления по высоте

с — аэродинамический коэффициент.

Расчет на ветер (сбор нагрузок)

Коэффициент *k*, учитывающий изменение ветрового давления по высоте z,

определяется по табл. 6 в зависимости от типа местности. Принимаются следующие типы местности:

А — открытые побережья морей, озє
 и водохранилищ. пустыни, степи,
 лесостепи, тундра;

В — городские территории, лесные массивы и другие местности,

равномерно покрытые препятствиям высотой более 10 м;

С — городские районы с застройкой зданиями высотой более 25 м. коэффициент

Высота <i>z</i> , м	Коэффици	иент k для типов местности				
	A	В	С			
≤ 5	0,75	0,5	0,4			
10	1,0	0,65	0,4			
20	1,25	0,85	0,55			
40	1,5	1,1	0,8			
60	1,7	1,3	1,0			
80	1,85	1,45	1,15			
100	2,0	1,6	1,25			
150	2,25	1,9	1,55			
200	2,45	2,1	1,8			
250	2,65	2,3	2,0			
300	2,75	2,5	2,2			
350	2,75	2,75	2,35			
≥ 480	2,75	2,75	2,75			

Разобъем исследуемую мачту на отдельные участки - секции

Вычислим значения коэффициента k по таблице интерполяцией

Для графического определения (интерполяции коэффициента k) построим График его зависимости по высоте в Автокаде для типа местности А, найдем графически коэффициенты k на высоте

Таким образом, для опредедения средней составляющей ветровой нагрузки остается определить аэродинамический коэффициент с. Аэродинамический коэффициент для решетчатых башен и пространственных ферм определяется по формуле:

$$c_t = c_x(1+\eta)k_1,$$

Где:

С_x – аэродинамический коэффициент отдельностоящей плоской решетчатой конструкции

$$c_{x} = \sum \left(C_{Xi} A_{i} \right) / A_{k}$$

 C_{Xi} — аэродинамический коэффициент i-элемента конструкции

- *А_i* площадь проекции і-элемента конструкции
- A_k площадь ограниченная контуром конструкции

- п коэффициент, учитывающий давление ветра на подветренную грань.
 Определяется по табл. В.8 СП 20.13330.2016 в зависимости от относительного расстояния между фермами и коэффициента заполнения ферм.
 - *k*₁ коэффициент, зависящий от контура поперечного сечения и направления ветра

Значение коэффициента k1 в зависимости от ориентации направления ветра по отношению к башне

При определении аэродинамического коэффициента решетчатой конструкции С_t принимается, что направление ветра всегда перпендикулярно грани башни

Вновь рассмотрим формулу $c_t = c_x (1+\eta)k_1$,

- *k*₁ Определяется геометрией поперечного сечения и для исследуемых сечений (треугольных) равен **0,9**
- *η* для ферм из профилей труб данный коэффициент (коэффициент затенения) определяется по данным таблицы:

Таблица В.8

	b/h								
φ	1/2	1	2	4	6				
0,1	0,93	0,99	1	1	1				
0,2	0,75	0,81	0,87	0,9	0,93				
0,3	0,56	0,65	0,73	0,78	0,83				
0,4	0,38	0,48	0,59	0,65	0,72				
0,5	0,19	0,32	0,44	0,52	0,61				
≥0,6	0	0,15	0,3	0,4	0,5				

При этом величина b/h принимается исходя из данных рисунка, приведенного на следующем слайде

$$A_k$$
 — площадь контура секции.

$$A_k = (25.125 - 18.375) \times 2.3 \approx 15.5 \ \text{m}^2$$

 $\sum A_i = 6,07 \ M^2$ сумма площадей проекций входящих в рассматриваемый участок мачты стержней $\varphi = rac{6,07}{15,5} pprox 0,39$ коэффициент заполнения

Тогда пользуясь таблицей В.8 приложения СП 20.1330-2016, определим величину коэффициента затенения по интерполяции: $\eta \approx 0,497$

Теперь неизвестной величиной в следующей формуле является только сх

$$c_t = \frac{c_x}{(1+\eta)k_1},$$

Определение коэффициента Сх

Опять рассмотрим тот же участок ферменной конструкции, запишем для него величины площадей проекций входящих в него элементов.

Отм. +25,125 Отм. +18,375					5	Вычислим для этого участка коэффициенты лобового сопротивления и, далее, определим коэффициент Сх для рассматриваемого фрагмента $C_x = \frac{\sum A_i C_{xi}}{A_k}$ Расчет удобно вести в табличной форме:				
	Наим. элемен та		Сече ние, мм	Длин а, мм	Площ. Проекц ии м2	Число Рейно льдса	Коэффиц иент лобоворг о соротивл Схі	Ai*Cxi	Cx=ΣAiCxi/Ak	
	пояс	С	114	20280	2.31	2,93	0,79	1,82		
	раскос	С	89	24540	2,18	2,29	0,97	2,12		
	распорка	С	76	20700	1,57	1,96	1,07	1,68	5.63/15.5 = 0.36	
	лестниц ы			6750	6,07			5,63		
								0,21		20

Определение числа Рейнольдса и коэффициента лобового сопротивления

Число Рейнольдса определяется в соответствии с формулой приведенной в В.1.11 (Приложение), где в качестве d принимается диаметр трубчатых элементов:

 $\operatorname{Re} = 0.88d\sqrt{w_0 k(z)\gamma_f}$

Коэффициенты сопротивления элементов Схі определяются по формуле:

$$C_{xi} = k_{\lambda} c_{x\infty}$$

Окончательно ветровая нагрузка на рассматриваемую секцию будет вычисляться по формуле:

$$Q = W_p A_k C_t K_{\text{неучтен}} = \underbrace{48 \times 1, 4 \times 1, 272}_{W_p} \times 15, 5 \times \underbrace{0, 36 \times (1+0, 497)}_{C_t} \times \underbrace{1, 1}_{K_{\text{неучтенн}}} \approx 0,71m$$

Дополнительно учтем нагрузку от лестницы:

$$Q_{\pi} = K_{\text{неучтен}} W_{p} LA_{i}C_{t} = \underbrace{1,1}_{K_{\text{неучтенн}}} \times \underbrace{48 \times 1,4 \times 1,272}_{W_{p}} \times \underbrace{6,75}_{L} \times 0,21 \approx 0,13 \text{ m}$$

С учетом лестницы: $Q_{\sum} = 0,71+0,13 = 0,84 \text{ m}$ 39

График зависимости коэффициента *Сх* от числа Рейнольдса и шероховатости

Литература

- Карпиловский В.С., Крискунов Э.З., Перельмутер А.В., Перельмутер М.А., Трофимчук А.Н. SCAD для пользователя. – Киев.: ВВП «Компас», 2000. – 332 с.
- Семенов А.,А., Габитов А.И. Проектно-вычислительный комплекс SCAD в учебном процессе. Часть 1. Статический расчет : Учебное пособие. – М.: Издательство АСВ, 2005. 152 с.
- 3. Шапошников Н.Н., Кристалинский Р.Е., Дарков А.В. Строительная механика. М.2012. 703 с. Доступ из ЭБС «Лань».
- 4. Перельмутер А.В. Расчетные модели сооружений и возможность их анализа [Электронный ресурс]/ Перельмутер А.В., Сливкер В.И.— Электрон. текстовые данные.— М.: ДМК Пресс, 2009.— 456 с.— Режим доступа: http://www.iprbookshop.ru/7880.— ЭБС «IPRbooks».
- 5. SCAD Office. Вычислительный комплекс SCAD.:[учеб.пособие по направлению 653500 «Стр-во» /В.С. Карпиловский и др.] М.: Изд-во Ассоц. Строит. Вузов, 2008